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Abstract—O crescimento exponencial de conteido digital tem
resultado em uma sobrecarga de informacoées, dificultando a
descoberta de recomendacdes relevantes para os usudarios. Este
trabalho apresenta o desenvolvimento de uma plataforma dig-
ital para fornecer recomendacoes personalizadas de muiisicas,
jogos e filmes. A arquitetura do sistema é baseada no modelo
cliente-servidor, com um frontend desenvolvido em React e um
backend em Python exposto por uma API HTTP. Foi desen-
volvido um prototipo de banco de dados utilizando SQL Server,
preparado para implementacao futura de filtragem colaborativa.
Na versao atual, o sistema emprega filtragem baseada em
conteddo, utilizando calculo de similaridade de cosseno para
gerar recomendacées personalizadas. Os dados tém origem em
arquivos CSYV, que sdo pré-processados em matrizes numéricas
otimizadas para consulta. O resultado ¢ uma plataforma fun-
cional que facilita a descoberta de contetido digital de forma
personalizada.

Index Terms—Sistemas de Recomendacao, Filtragem Baseada
em Contetido, Similaridade de Cosseno, React, Python

I. INTRODUCAO

O acesso a um grande volume de conteido digital, como
filmes, musicas e jogos, tornou-se uma caracteristica central
da era digital [1]. Essa abundancia, contudo, gera o desafio
da sobrecarga de informacdo, dificultando a capacidade dos
usudrios de encontrar contetidos alinhados aos seus interesses.
Como resposta a esse problema, os sistemas de recomendacao
foram desenvolvidos e integrados como componentes essenci-
ais em diversas plataformas online, atuando como mecanismos
de filtragem para auxiliar na descoberta de novos itens [2].

A implementacdo desses sistemas é, em geral, focada na
personalizacdo da experiéncia do usudrio, utilizando algorit-
mos para analisar comportamento e prever preferéncias. No
entanto, essa abordagem levanta questoes sobre autonomia,
transparéncia e influéncia algoritmica [3]. Frequentemente, o
objetivo principal de plataformas comerciais € a retencdo da
atencdo do usudrio, o que pode levar ao desenvolvimento de
mecanismos de consumo continuo de conteido, associados a
padrdes de uso prolongado [4]. Essa dindmica pode resultar
na formagao de “bolhas de filtro” [5], limitando a exposicdo
do usudrio a novas perspectivas e reduzindo diversidade de
descoberta.

Neste contexto, o presente trabalho propde uma plataforma
de recomendacdo que explora principalmente caracteristicas
internas das midias consumidas, sem depender de grandes
volumes de interacdes de multiplos usudrios. O foco estd na

clareza do funcionamento do algoritmo e na promog¢do de uma
experiéncia de descoberta mais ativa e consciente.

A. Justificativa

O problema central abordado por este projeto € a passivi-
dade do usudrio frente a algoritmos otimizados para enga-
jamento continuo, o que pode limitar a descoberta organica
de novo conteddo cultural. A justificativa para este trabalho
reside na criacdo de uma alternativa a esse modelo. Propde-se
uma plataforma que utiliza técnicas de filtragem baseada em
conteudo para oferecer recomendacdes personalizadas a partir
de caracteristicas das midias, resultando em uma experi€ncia
de descoberta mais significativa e alinhada aos interesses
genuinos do usudrio.

B. Objetivo Geral

Desenvolver uma plataforma digital para a recomendacio
de musicas, filmes e jogos, utilizando técnicas de filtragem
baseada em contetdo e cdlculo de similaridade.

C. Objetivos Especificos

o Implementar uma arquitetura de sistema cliente-servidor,
utilizando React no frontend e servicos em Python no
backend,

o Projetar um protétipo de banco de dados em SQL Server
para suporte futuro a funcionalidades avangadas;

o Implementar um sistema de recomendagdo baseado em
filtragem de conteddo, utilizando célculo de similaridade
de cosseno;

o Processar e vetorizar datasets de musicas, filmes e jogos
para possibilitar o célculo de similaridade;

o Desenvolver interfaces de usudrio intuitivas para selecao
de preferéncias e visualizacdo de recomendacdes.

II. REFERENCIAL TEORICO

Esta secdo apresenta os conceitos fundamentais que em-
basam sistemas de recomendagdo e técnicas utilizadas em
cendrios de descoberta de contetdo digital.

A. Sistemas de Recomenda¢do

Sistemas de recomendacdo s@o sistemas de software que
fornecem sugestdes de itens que possam ser do interesse de um
determinado usudrio [1]. Esses sistemas auxiliam na navegacao
em catdlogos extensos, reduzindo a sobrecarga de informacao



e aumentando a probabilidade de descoberta de itens relevantes
[2].
As abordagens mais comuns sio [2]:
o filtragem baseada em conteido (Content-Based Filter-
ing);
« filtragem colaborativa (Collaborative Filtering);
« sistemas hibridos, que combinam multiplas técnicas [9].

B. Filtragem Baseada em Contetido

Na filtragem baseada em contetido, os itens sdo represen-
tados por vetores de caracteristicas, e o sistema recomenda
novos itens semelhantes aqueles que o usudrio ja demonstrou
interesse [6]. O perfil do usudrio é construido a partir dos itens
selecionados ou avaliados positivamente, e a recomendacio €
formulada com base na similaridade entre esse petfil e os itens
restantes do catdlogo.

Um componente fundamental dessa abordagem ¢ a
representacdo dos itens. Para atributos textuais, € comum
o uso de TF-IDF (Term Frequency—Inverse Document Fre-
quency), que atribui pesos maiores a termos frequentes em
um documento, mas raros na cole¢do como um todo [6].
Para atributos categdricos, técnicas como One-Hot Encoding e
Multi-Label Binarization produzem vetores bindrios indicando
a presenga ou auséncia de gé€neros, categorias ou desenvolve-
dores. A combinagdo dessas representagdes resulta em vetores
numéricos capazes de capturar multiplas dimensdes de cada
item.

Apesar de simples e interpretdvel, a filtragem baseada em
contetido pode apresentar limitacdes como overspecialization,
quando o sistema passa a recomendar itens muito semelhantes
entre si, reduzindo diversidade de descoberta [6].

C. Similaridade de Cosseno

A similaridade de cosseno ¢é amplamente utilizada
em filtragem baseada em conteddo por ser robusta em
espagos vetoriais de alta dimensionalidade, especialmente em
representagdes esparsas derivadas de TF-IDF [6]. Dado dois
vetores de caracterfsticas A e B, a similaridade de cosseno é
definida como:

— —

- = A-B
similaridade(A, B) = —————
1AL 1B

O valor resultante estd entre O € 1, onde 1 indica maxima
similaridade e O indica auséncia de alinhamento direcional
entre os vetores.

D. Filtragem Colaborativa

A filtragem colaborativa (Collaborative Filtering) utiliza o
histérico de interacdes de um conjunto de usudrios para iden-
tificar padrdes de preferéncia compartilhados [8]. Em aborda-
gens user-based, buscam-se usudrios com gostos similares; em
abordagens item-based, identificam-se itens frequentemente
consumidos em conjunto.

Embora apresente bom desempenho em plataformas com
grande volume de usudrios e avaliacdes, a filtragem colabora-
tiva enfrenta desafios tipicos, como esparsidade de avaliacdes
e cold start (falta de dados para novos usudrios/itens) [8].

E. Sistemas Hibridos

Sistemas hibridos combinam filtragem baseada em contetido
e filtragem colaborativa para mitigar limitacdes de cada
abordagem [9]. Essa combinacdo pode aumentar robustez
em cendrios de poucos dados e, simultaneamente, aproveitar
padrdes coletivos quando interagdes de miltiplos usudrios
estdo disponiveis.

FE Objetivos e Implicacoes de Sistemas de Recomendagdo

Além de precisdo, sistemas de recomendacdo podem ser
projetados para otimizar objetivos como diversidade e novi-
dade, evitando recomendagdes repetitivas e reduzindo o risco
de reforgar preferéncias de forma estreita [1], [2]. Em platafor-
mas digitais, também se discutem implica¢des sociais e
comportamentais relacionadas a influéncia algoritmica e a
formacdo de “bolhas de filtro” [3], [5]. Esses efeitos sdo
relevantes quando o desenho do sistema prioriza retengdo de
atencdo em detrimento de autonomia e exploragdo, podendo
contribuir para padrdes de consumo prolongado [4].

G. Representacdo de Itens e Matriz de Caracteristicas

Em sistemas de recomendacdo baseados em conteddo, a
qualidade da recomendacdo depende diretamente de como
cada item ¢é representado numericamente. Como misicas,
filmes e jogos possuem descricdes heterogéneas, é comum
adotar uma representacdo multiatributo, combinando campos
textuais, categdricos e numéricos em um mesmo vetor de
caracteristicas [2], [6]. Em termos praticos, essa representaciao
forma uma matriz X € R"*¢, em que cada linha corresponde
a um item do catdlogo e cada coluna representa uma feature
(atributo) utilizada para comparagao.

Campos textuais (por exemplo, sinopses, descricdes cur-
tas, palavras-chave) normalmente sdo convertidos em vetores
usando TF-IDF, resultando em matrizes esparsas e de alta
dimensionalidade [6]. J4 campos categéricos (géneros, cat-
egorias, desenvolvedores, artistas) podem ser representados
por codificagdes binarias como One-Hot Encoding ou Multi-
Label Binarization. Por fim, atributos numéricos (populari-
dade, duragdo, notas, BPM e atributos de dudio) devem ser
normalizados para evitar que escalas maiores dominem o
célculo de similaridade [2]. A concatenacdo dessas partes
gera um vetor final que busca capturar diferentes aspectos do
item e permitir comparag@o consistente entre itens do mesmo
dominio.

H. Ponderacdo por Dominio e Importdncia Relativa de Atrib-
utos

Embora a concatena¢do de multiplas fontes de informagdo
aumente a riqueza descritiva dos itens, nem todos os atributos
contribuem da mesma forma para a percepcao de similaridade.
Por exemplo, em musicas, género e atributos de dudio tendem
a ser muito informativos; em filmes, elenco, direcdo e palavras-
chave podem ser determinantes; em jogos, categorias e fags
frequentemente representam melhor o tipo de experiéncia
oferecida [1], [2]. Assim, € comum atribuir pesos diferentes



para grupos de features, refletindo sua importancia relativa no
dominio.

Formalmente, a ponderacdo pode ser vista como uma
transformacdo em que cada dimensdo do vetor recebe
um fator wj, resultando em um vetor ponderado ¥ =
(wix1,wes, ..., wexy). Essa estratégia permite calibrar o
impacto de certos atributos no cdlculo de similaridade, re-
duzindo ruido e aumentando a aderéncia semantica das
recomendacdes. No entanto, a definicdo desses pesos &
um ponto sensivel: pesos mal ajustados podem induzir
recomendacdes enviesadas, enfatizando excessivamente um
Unico tipo de atributo e reduzindo diversidade [6].

1. Limitacées Cldssicas em Recomendacdo Baseada em
Contelido

Apesar de interpretdvel e aplicivel mesmo com poucos
usudrios, a filtragem baseada em contetido possui limitagdes
recorrentes na literatura. A primeira € o cold start do item:
quando um item novo possui metadados incompletos ou pouco
informativos, sua representacao vetorial fica pobre e o sistema
tende a sub-recomendi-lo [2]. Diferentemente da filtragem
colaborativa, que pode se beneficiar de sinais coletivos, a abor-
dagem baseada em contetido depende fortemente da qualidade
e consisténcia dos atributos disponiveis.

Outro problema frequente € a overspecialization, em que
o sistema recomenda itens excessivamente semelhantes aos
ja selecionados, restringindo a explora¢do do catilogo e re-
duzindo novidade [6]. Esse efeito pode ser agravado quando
h4 forte peso em categorias dominantes ou quando o perfil
do usudrio é representado por uma agregacdo que privilegia
preferéncias mais recorrentes.

Por fim, destaca-se o viés de popularidade versus nicho.
Atributos como “popularidade” ou “nota média” podem in-
troduzir uma tendéncia de recomendar itens amplamente con-
sumidos, mesmo quando o objetivo do usudrio é descobrir
conteudos alternativos [1], [2]. Por isso, sistemas praticos fre-
quentemente equilibram relevancia e diversidade por meio de
heuristicas e ajustes de ponderag¢do, buscando recomendacdes
que sejam semelhantes, mas nio repetitivas.

III. TRABALHOS CORRELATOS

Para contextualizar a presente proposta, foram analisados
projetos que exploram diferentes aspectos da recomendagdo de
entretenimento. Cada trabalho contribuiu de forma especifica
para o desenho da plataforma.

O trabalho de D. L. S. Junior com o Smartbox [16] explora
a criagdo de playlists musicais adaptadas a ambientes compar-
tilhados, conciliando preferéncias de miltiplos ouvintes. Esse
sistema motivou o uso de algoritmos de recomendacdo para
apoiar descobertas musicais em contextos coletivos. Diferente-
mente do Smartbox, que se restringe ao dominio musical, a
plataforma aqui proposta abrange trés tipos de midia (musicas,
filmes e jogos).

O sistema MOVE! [17] foca em recomendacio de musicas
para atividades fisicas, utilizando atributos como anda-
mento (BPM) e intensidade. Esse trabalho reforcou a im-
portincia de explorar metadados especificos na modelagem

das recomendagdes. Na plataforma atual, a ideia é generalizada
para outros dominios: atributos de dudio sdo combinados com
género em miusicas, enquanto jogos e filmes utilizam tags,
palavras-chave e informacdes de elenco.

Por fim, o trabalho de Furlan [18] implementa e descreve
em detalhes abordagens de filtragem colaborativa e baseada
em contetdo aplicadas a filmes e séries. Sua monografia serviu
como referéncia técnica direta para definicdo de pipeline de
vetorizacdo, uso de TF-IDF e aplicacdo de similaridade de
cosseno. O presente projeto retoma essas técnicas, mas as
aplica em um cendrio multi-dominio, com arquiteturas de
servicos independentes para cada tipo de midia.

IV. METODOLOGIA
A. Abordagem de Desenvolvimento

A metodologia de gerenciamento adotada foi o Kanban [7].
Esse método agil organiza o trabalho em um quadro de colunas
(por exemplo, Backlog, Em Progresso, Concluido), permitindo
acompanhar visualmente o fluxo das tarefas. Para um projeto
de pesquisa aplicada, que passa por ciclos de experimentacao
e refinamento, a flexibilidade do Kanban mostrou-se adequada
[19].

As principais frentes de trabalho foram divididas em:
preparacdo de dados, implementacdo dos servicos de
recomendacdo, desenvolvimento do frontend, modelagem do
banco de dados e documentacdo. Essa divisdo facilitou a
priorizacdo gradual das funcionalidades essenciais, garantindo
que um protétipo funcional de ponta a ponta estivesse
disponivel antes da inclusdo de refinamentos.

B. Arguitetura do Sistema

O sistema proposto adota arquitetura cliente-servidor. O
frontend foi desenvolvido em React [13] e consome uma
API HTTP unificada. No backend, servicos em Python [12]
executam a recomendagdo por dominio (mdusicas, filmes e
jogos) e expdem rotas especificas para consulta.

A comunicag@o entre o frontend e os servigos € intermedi-
ada por um API Gateway, responsdvel por expor uma interface
consistente para o cliente e encaminhar requisi¢des ao servico
correspondente. Essa decisdao simplifica o frontend, centraliza
configuracdes e permite, futuramente, adicionar autenticacio
e logging de forma transversal.

C. Modelagem do Banco de Dados

Foi desenvolvido um protétipo de banco de dados relacional
utilizando SQL Server Management Studio [10], com o obje-
tivo de preparar a plataforma para funcionalidades futuras de
persisténcia de usudrios e histérico de interacGes, necessarias
para evolug¢do em dire¢@o a filtragem colaborativa.

A Figura 1 apresenta o modelo relacional proposto. O
esquema inclui entidades para usudrios, listas de midias,
itens de lista, avaliagdes e tabelas de detalhes especificos de
musicas, filmes e jogos. A tabela midias concentra atributos
comuns e se relaciona com tabelas de detalhes (por exemplo,
filme_detalhes, musica_detalhes e jogo_detalhes), enquanto
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Fig. 1. Protétipo do modelo relacional do sistema.

tabelas como avaliacoes e listas suportam histérico de pre-
feréncias.

Na versao atual do protétipo funcional, a recomendacio
opera a partir de estruturas pré-processadas em disco, man-
tendo o banco de dados como componente planejado para
evolugdes futuras.

D. Seguranca e Autenticacdo

Como preparacdo para persisténcia de usudrios e rotas
protegidas, foi prototipado um mecanismo de autenticacdo
baseado em JSON Web Tokens (JWT) [11]. O modelo contem-
pla cadastro, verificacdo de credenciais e emissdo de tokens
assinados para autenticacdo stateless em requisicdes HTTP.
No protétipo final avaliado neste trabalho, esse mecanismo
permanece desativado para manter o foco na recomendacio
baseada em contetdo.

E. Processamento de Dados e Pipeline de Recomendagdo

Os dados de entrada do sistema sdo datasets publicos
em formato CSV [20]-[22]. Para reduzir laténcia durante
execucdo, foi adotado pré-processamento offline: scripts em
Python carregam os CSVs, executam limpeza, selegdo de atrib-
utos, vetoriza¢dio e normalizacdo, e gravam os resultados em
arquivos otimizados (por exemplo, tabelas Parquet e matrizes
serializadas).

Durante execucdo, os servigos carregam diretamente essas
estruturas e calculam recomendacdes a partir de vetores de
caracteristicas. Essa estratégia evita reprocessamento a cada
requisi¢do e favorece tempos de resposta adequados.

F. Levantamento de Requisitos

O levantamento de requisitos resultou nos itens funcionais
e ndo funcionais sintetizados nas Tabelas I e II. Os requisitos
foram usados como guia para priorizacdo das atividades, com
foco em garantir que o usudrio pudesse selecionar midias,

receber recomendagdes em tempo adequado e navegar em uma
interface responsiva.

TABLE I
REQUISITOS FUNCIONAIS
ID Descricao

RFO1 | Permitir que o usudrio selecione musicas, filmes ou jogos de
seu interesse.

RF02 | Exibir recomendacdes de midias baseadas nas selecdes do
usudrio.

RFO03 | Calcular a similaridade entre itens usando vetores de carac-
teristicas.

RF04 | Apresentar categorias de recomendacgdes (principais, joias
escondidas, cldssicos).

RFO05 | Exibir scores de similaridade normalizados para cada
recomendacao.

TABLE I
REQUISITOS NAO FUNCIONAIS
ID Descricao
RNFO1 | Interface responsiva (desktop e dispositivos moveis).
RNF02 | Tempo de resposta para gerar recomendacgdes inferior a 3
segundos.
RNF03 | Comunicagdo cliente-servidor por meio de protocolo HTTPS.
RNF04 | Processamento eficiente de datasets em formato CSV pré-
processados.

V. RESULTADOS
A. Tela de Login

Embora a autenticacdo JWT ndo esteja ativa no protStipo
final, foi construida uma tela de login que ilustra o fluxo
planejado de acesso por usudrio. A Figura 2 apresenta essa
interface, que poderd ser conectada ao sistema de autenticacao
quando a persisténcia de usudrios for ativada.

B. Servigos de Recomendagdo e Pré-processamento

Os trés servicos de recomendacdo (musicas, filmes e jo-
gos) compartilham a mesma filosofia de implementagdo: cada
servico possui um script de pré-processamento executado de
forma offline e um aplicativo que expde recomendacgdes via
HTTP.

1) Sistema de Miisicas: No dominio musical, o dataset
“Spotify Tracks DB” [20] foi utilizado como base. Um script
de preparacdo carrega o CSV, remove duplicatas e sele-
ciona atributos de dudio como danceability, energy,
valence, tempo e loudness. Esses atributos sdo nor-
malizados e combinados com uma representagdo one-hot de
géneros.

Ap6s o pré-processamento, sdo gerados um arquivo Parquet
com os dados limpos e uma matriz de features serializada em
disco. Durante a execug@o, 0 servico carrega essas estruturas e
atende requisicdes de recomendacdo sem precisar reprocessar
o CSV.
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Fig. 2. Tela de login planejada para o sistema.

2) Sistema de Jogos: O sistema de jogos utiliza dados
coletados a partir da API SteamSpy e filtrados por niimero
minimo de avaliagdes [22]. Para cada jogo, sdo consideradas
features como gé€neros, categorias, desenvolvedores, qualidade
e uma descricdo curta. Matrizes de caracteristicas sdo con-
struidas para cada grupo e combinadas com pesos, de modo
que géneros e categorias tenham maior impacto no score final.

3) Sistema de Filmes: Para filmes, foi adotado o “TMDB
5000 Movie Dataset” [21], que é resultado da fusdo de dois
arquivos CSV (movies e credits). O pré-processamento unifica
0s arquivos, extrai géneros, palavras-chave e informagdes de
elenco e dire¢do, e aplica TF-IDF as colunas textuais. Um
vetor médio € utilizado para representar o “perfil” das sele¢des
do usudrio.

C. Evolugdo do Algoritmo de Recomendacdo

A primeira versdo do algoritmo utilizava a média dos
vetores das midias selecionadas para compor um tunico vetor
de perfil do usudrio. Durante os testes, observou-se que essa
estratégia dilufa gostos minoritarios: itens de nicho acabavam
ofuscados por preferéncias mais frequentes.

Para contornar esse problema, o algoritmo foi reformulado
para uma abordagem “item-a-item”. Em vez de um tnico
vetor médio, cada item selecionado contribui com sua prépria
similaridade em relacdo aos candidatos. Para cada candidato
C e conjunto de itens selecionados S, o score € calculado por:

Score(C) = Z similaridade_cosseno(C, s)
seS

Essa estratégia preserva a influéncia de itens de nicho, pois
candidatos muito semelhantes a um unico item selecionado
ainda podem alcangar uma pontuacdo elevada.

D. Implementagcdo em Codigo

Para fins de documentacdo, trechos ilustrativos da
implementacdo do algoritmo s@o representados nas Figuras 3,
4es.

oncat(all_recommenda
combined ort_vali

ons, ignore_in

ot combined_n

combined_recs[” combined_rec:

result = combined recs.merge(self.df, on="id", how=

result = self._apply_artist penalty(result)
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print(f" len(result)} r

r n result

Fig. 3. Montagem dos vetores de caracteristicas a partir dos dados pré-
processados.

e, n_recommendations=166):

print(f

all_recommendations
d_indices:
self.feature_mat

if hasattr(track u
tra

if hasattr(self.f

feature_mat| elf. feature_matr:

self.feature_matrix

Fig. 4. Calculo da similaridade de cosseno entre itens selecionados e catdlogo.

Nos servigos implementados, apds o célculo de similaridade
sdo aplicadas heuristicas adicionais: potenciacdo da similar-
idade para enfatizar diferencas, penalizacdo de artistas ou
desenvolvedores repetidos e normalizacdo dos scores em uma
escala percentual entre 0 e 100, facilitando a interpretacdo pelo
usudrio.



similarities = cosine_similarity(track vector, feature matrix_dense).flatten()

similar_df ilar_df[~similar_df['id n(track_ids)]

top_similar = similar_df.nlargest(2e, 's
all_recommendations.append(top_similar)

Fig. 5. Ranking de recomendagdes, penalizacdo e normalizagdo de scores.

E. Interfaces de Usudrio

A navegacdo do sistema inicia pela tela de login (Figura 2).
Apds a autenticagdo ou entrada no protdtipo, o usudrio é
direcionado para a pdgina inicial, ilustrada na Figura 6, que
destaca o dominio de musicas como ponto de partida para
exploragdo das midias.

Fig. 6. Pagina inicial da plataforma com destaque para o dominio de misicas.

Em seguida, o frontend é organizado em péginas inde-
pendentes para musicas, filmes e jogos, com componentes
compartilhados para cabecalho, cartdes de midia e listagem
de recomendacdes.

1) Sistema de Recomendacdo de Miisicas: O subsistema
de musicas possui uma tela de selecdo (Figura 7) e uma tela
de resultados (Figura 8). Na tela de selecdo, o usudrio pode
buscar faixas e adiciond-las a uma lista de preferéncias. Na
tela de resultados, as recomendacOes sdo exibidas em listas
ordenadas com seus respectivos scores.

2) Sistema de Recomendagdo de Jogos: De forma semel-
hante, o subsistema de jogos apresenta telas de selecdo
(Figura 9) e resultados (Figura 10), nas quais sdo exibidos
titulos, géneros, categorias e qualidade dos jogos recomenda-
dos.

3) Sistema de Recomendagdo de Filmes: O subsistema de
filmes enfatiza informagdes como poster, sinopse e nota média.
As Figuras 11 e 12 ilustram as telas de selecdo e resultados,
respectivamente.

F. Validagdo e Testes

Foram realizados testes de unidade para verificar a con-
sisténcia das transformacdes de dados e dos célculos de

Fig. 7. Interface de selec@o do sistema de musicas.
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Fig. 9. Interface de sele¢@o do sistema de jogos.

similaridade, bem como testes de integragdo envolvendo o
API Gateway, os servi¢os de recomendacdo e o frontend. Em
testes praticos, o sistema foi capaz de responder com listas
de recomendacdes em menos de 2 segundos para datasets
contendo até 170 000 musicas, 5 000 filmes e 800 jogos,
atendendo ao requisito RNF02.

VI. CONCLUSAO

Este trabalho apresentou o desenvolvimento de uma
plataforma digital para recomendagdo de misicas, filmes e
jogos, integrando conceitos de sistemas de recomendag@o,
processamento de dados e desenvolvimento web. A solucio
adotou filtragem baseada em contetdo, representando itens por
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Fig. 12. Interface de resultados do sistema de filmes.

vetores de caracteristicas e utilizando similaridade de cosseno
para medir proximidade entre midias.

Do ponto de vista académico, o projeto possibilitou a
aplicacdo pratica de técnicas de vetorizacio (TF-IDF, One-Hot
Encoding), normalizacdo e cdlculo de similaridade em datasets
reais. Também proporcionou experiéncia na constru¢ao de uma
arquitetura modular com servi¢os por dominio, no uso de um
API Gateway e na criagdo de uma interface reativa em React.

Algumas limitagdes foram identificadas. A auséncia de fil-
tragem colaborativa impede que o sistema explore correlacdes
entre multiplos usudrios, e a carga completa das matrizes
em memoéria pode se tornar um gargalo em cendrios de

escala maior. Além disso, o protétipo de banco de dados e
o mecanismo de autenticacdo JWT permanecem desativados
na versao atual.

Como trabalhos futuros, destacam-se: (i) ativar persisténcia
de usudrios e implementar filtragem colaborativa, combinando-
a com a abordagem baseada em contetdo; (ii) empregar estru-
turas de indice vetorial para acelerar consultas em catdlogos
maiores; (iii) integrar o sistema a APIs oficiais de provedores
de midia, permitindo atualizacdo automadtica de catdlogos; e
(iv) adicionar mecanismos de feedback explicito dos usudrios,
para que o algoritmo possa ajustar seus parametros ao longo
do tempo.

Apesar dessas limitagdes, o protétipo cumpre o objetivo
de demonstrar, de forma clara e funcional, como técnicas
de filtragem baseada em conteddo podem ser utilizadas para
construir um sistema de recomendacdo multi-dominio.
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